Face Recognition using Mixture-Distance and Raw Images
نویسندگان
چکیده
Earlier work suggests that mixture-distance can improve the performance of feature-based face recognition systems in which only a single training example is available for each individual. In this work we investigate the non-feature-based Eigenfaces technique of Turk and Pentland, replacing Euclidean distance with mixture-distance. In mixture-distance, a novel distance function is constructed based on local second-order statistics as estimated by modeling the training data with a mixture of normal densities. The approach is described and experimental results on a database of 600 people are presented, showing that mixture-distance can reduce the error rate by up to 73.9%. In the experimental setting considered, the results indicate that the simplest form of mixture distance yields considerable improvement. Additional, but less dramatic, improvement was possible with more complex forms. The results show that even in the absence of multiple training examples for each class, it is sometimes possible to infer an improved distance function from a statistical model of the training data. Therefore, researchers using Eigenfaces or similar pattern recognition techniques may find significant advantages by considering alternative distance metrics such as mixture-distance.
منابع مشابه
Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کامل3D Face Recognition using Patch Geodesic Derivative Pattern
In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...
متن کاملImplementation of Face Recognition Algorithm on Fields Programmable Gate Array Card
The evolution of today's application technologies requires a certain level of robustness, reliability and ease of integration. We choose the Fields Programmable Gate Array (FPGA) hardware description language to implement the facial recognition algorithm based on "Eigen faces" using Principal Component Analysis. In this paper, we first present an overview of the PCA used for facial recognition,...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملA New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کامل